Promoting clean public transport

TROLLEY Roadmap -Operator perspective on ebus future

Gunter Mackinger Salzburg AG, Austria

Involved Stakeholders

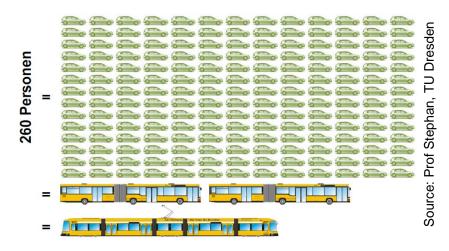
- Salzburg AG, AT
- PKT Gdynia, PL
- RATB Bucarest, RO
- PMDP Plzno, CZ
- SZKT Szeged, HU
- TEP Parma, IT

This project is implemented through the CENTRAL

EUROPE Programme co-financed by the ERDF

LVB Leipzig, DE

► Electromobility with passenger cars develops substantially slower than expected Handelsblatt, 24.2.2013: "Warum das E-Auto nicht zündet":


"44 Opel Ampera were sold during one month, ..."

"One million electric passenger cars in Germany by 2020 – scarcely anybody in the automotive branch still believes in reaching this set target of the (German) federal government."

"The electromobility hype has noticeably moved backwards."

▶ 1:1 Substitution of electric passenger cars won't solve the intra-urban traffic problems

(Noise, particulate matter, emissions, limited space, increase in 2nd or 3rd car etc.)

Greatest potential for further development of propulsion modes for public transport vehicles by 2020/2050?

- Operators need ready-to-use transport technology for electromobility; trolleybuses are a proven and stable electro-mobility solution for urban areas
- Electromobility with ebuses reduces noise exposure, particulate matter and vehicle exhaust emissions; Salzburg saves approx. 60.000 tons of CO2/year
- Trolleybus systems are building the bridge towards full electric public transport systems

Greatest potential for further development of propulsion modes for public transport vehicles by 2020/2050?

Which type of traffic is suitable for which type of electric PT (with ebuses)? - Different ebus systems for different areas of operations, but at present for a medium-sized city like Salzburg:

Battery buses do not achieve the required distance of 200-500 km/day

This project is implemented through the CENTRAL

Hybrid buses are not competitive without funding (case studies from Germany)

Greatest potential for further development of propulsion modes for public transport vehicles by 2020/2050?

Which type of traffic is suitable for which type of electric PT (with ebuses)? - different ebus systems for different areas of operations, but at present for a medium-sized city like Salzburg:

No adequate infrastructure for fuel cell buses; insufficient energy balance

Inductive ebus systems are too costly (due to construction cost); so far isolated application

Trolleybus systems are economical: feasability study Eberswalde -1 cent per scheduled km more expensive than diesel bus system

	Trolleybus	Diesel bus
Energy/fuel	264.000 €	442.600 €
Staff costs/driver	No difference	
Maintenance vehicle	80.000 €	72.000 €
Staff costs/garage	No difference	
Staff costs/cat.	126.000 €	
Maintenance/cat.	19.000 €	
Insurance vehicle	48.000 €	24.000 €
Investment/Recovery time	37.800 € 18 years	31.000 € 10 years
Difference	+5.200 €	
Difference/km	0,01 €	

Savings of 95% CO2 emissions (based on green power mix) compared to diesel bus system

Trolleybus systems are economical: feasability study for agglomeration Salzburg

Above approx. 4000 operational kilometres, the cost-effectiveness of the trolleybus is better than the costeffectiveness of the diesel bus in Salzburg.

Trends and biggest impact on the electrification of urban mobility in EU cities / what political action would be required?

 Raising oil prices and the transport dilemma of increasing urban sprawl; need for urban mobility vs. traffic-induced pollution

Preferential treatment of PT vs. individual transport (green city)

centers); regulatory consideration of sustainability goals in PT

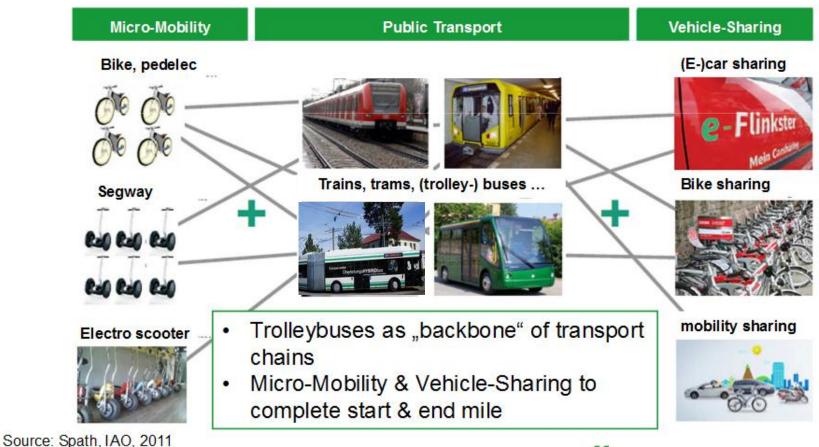
- Regulatory framework for the development of ebus systems in EU (e.g. common regulatory definition, tram or trolleybus legislation)
- Need for infrastructure funding and incentives schemes for ebus take-up

Game-changing technologies and scientific challenges for electric public transport in European cities of the next two decades?

- Long term perspective: research & development of batteries as complementary element
- Energy management systems (new interface (re)charging systems, recuperation of braking energy, smart grid, bus station of the future (with local renewable energy source)
- Development of high –capacity ebuses with a length of 30m plus; comparable capacities with tram systems

Promising strategies and business models to boost the introduction of electric public transport in future European smart cities?

- Life-cycle approach for environmental assessment of PT solutions (incl. energy source consideration) as precondition for start-up investment and funding
- Use synergies of other systems (e.g. tram)
- Intermodal approach with trolleybuses as "backbone" of an (electric) transport chain in a future smart city



Promising strategies and business models to boost the introduction of electric public transport

Promising strategies and business models to boost the introduction of electric public transport in future European smart cities?

- Development of new, and adaption of existing, staff training of PT operators for driving/maintenance of electric buses; e.g. the Intelligent Energy Europe project, ACTUATE (safe eco-driving of clean vehicles)
- Between 5 to 10% energy savings due to optimised driving behaviour of trolleybuses in Salzburg

Future catenary network for trolleybus systems and auxiliary engines in trolleybuses by 2020/2050?

Partial networks with flexible wiring and de-wiring (while driving)

Highly frequented PT axes will remain under the catenary (trams or trolleybuses) due to optimised energy efficiency with

flexible ebus solutions for less frequented urban districts

- Auxiliary engines could be fully electric across Europe in 2020!
- Trolleybuses as a bridging technology towards pure ebus solutions!

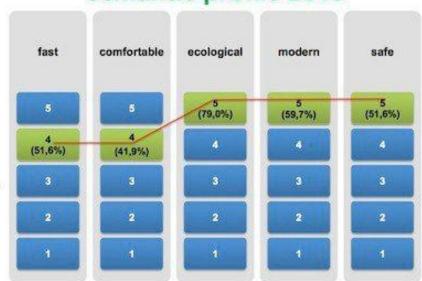
This project is implemented through the CENTRAL

Main factors that increase attractiveness of trolleybus systems and ground breaking technologies needed for further development?

- Financial instruments: tax preferences, financing schemes (based on life cycle approach)
- Need for high priority bus lanes/corridors, especially in bigger cities to increase capacity of trolleybus systems
- System approach (incl. bus stops etc.) and new designs

Left: Tbus Group, UK

Customers` perception:


- After introduction of new trolleybuses (incl. Europe's first Trolleybus-Battery-Hybrid)
- TROLLEY promotion activities, e.g. European Trolleybus Day

EBERSWALDE semantic profile 2011

This project is implemented through the CENTRAL EUROPE Programme co-financed by the ERDF

EBERSWALDE semantic profile 2013

Thank you for your attention!

KR Dir. Gunter Mackinger

Salzburg AG für Energie, Verkehr und **Telekommunikation** Salzburger Lokalbahnen

Tel.: +43/662-8884-6102

gunter.mackinger@salzburg-ag.at

www.obus.at

